Math 4550 Topic 5- Cyclic groups

Theorem: Let G be a cyclic group. If  $H \leq G$ , then H is cyclic.

Proof: Suppose G=<×> is cyclic. Let  $H \leq G$ . If H= {e}, then H= <e> is cyclic. Suppose H= Zez. Then there must exist a Elt with  $a \neq e$ . aEG. Since H ≤ G we know Thus, a=xk for some kEZ, k=0. If k < 0, then  $\overline{a'} = x^k$  is also in It since It is a subgroup. We can conclude that It contains

some x where n is a possitive integer. Let m be the smallest positive integer where X EH.  $Claim: H = \langle x^m \rangle$ We know  $\langle x^m \rangle \subseteq H$  because X EH and H is a subgroup So  $(x^{m})^{l} \in H$  for any  $l \in \mathbb{Z}$ . Let's show that  $H \leq \langle x^m \rangle$ . Let yeH. Then y=x<sup>a</sup> for some aEZ since  $H \leq G$  and  $G = \langle x \rangle$ . By the division algorithm a=mq+r where q,rEZ and  $0 \leq r < M$ .

Then,  $y = x^a = x^{m_a} x^r$ So,  $x' = (x^{mq})^{-1} y = (x^{m})^{-2} y$ in H in H Since x~EH

Thus,  $x^{r} \in H$ . Since  $x^{r} \in H$  and  $0 \leq r < m$ Since  $x^{r} \in H$  and  $0 \leq r < m$ and m is the smallert porifive and m is the smallert porifive integer with  $x^{m} \in H$  we must integer with  $x^{m} \in H$  we must have that r = 0. have that r = 0. have that r = 0.  $have = (x^{m})^{q} x^{o}$  $= (x^{m})^{q} e^{-1}$ 

50, y E < x m >, Thus,  $H \leq \langle x^m \rangle$ .





Ex: Find all subgroups of Z12. Since Ziz is cyclic all its subgroups must be cyclic. Lemma: If G is a group and  $x \in G$ , then  $\langle x' \rangle = \langle x \rangle$ . Prost: HW.

ull subgroups of ZZ12:

 $\langle \hat{i} \rangle = Z_{12} = \langle \hat{i} \rangle + \langle \hat{i} = \hat{i}$ くううこうう  $\langle 2 \rangle = \langle 0, 2, \overline{7}, \overline{6}, \overline{8}, \overline{10} \rangle = \langle \overline{10} \rangle + \overline{2^{-1} + \overline{10}}$  $\langle 3 \rangle = \{ 0, 3, 6, 9 \} = \langle 9 \rangle + [3] = 9$  $\langle \overline{4} \rangle = \{ \overline{2}, \overline{4}, \overline{8} \} = \langle \overline{8} \rangle + [\overline{4}] = \langle \overline{8} \rangle$ 



Theorem: (Homomorphisms out of cyclic  
groups) Let 
$$G_1 = \langle x \rangle$$
 be a  
cyclic group. Let  $G_2$  be a group.  
case 1: Suppose x has finite order n  
lick  $y \in G_2$  with order m dividing n.  
Then,  $\varphi: G_1 \rightarrow G_2$  given by  $\varphi(x^k) = y^k$   
is a homomorphism. Furthermore,  
every homomorphism from  $G_1$  to  $G_2$   
is of the above form.  
 $G_1$   
 $x$   
 $y$   
 $x$   $y$   
 $y$   
 $y$   
 $y$  has order  
m dividing n



Ex: Let's find all homomorphisms  $\varphi: U_6 \rightarrow U_4$ .

We have  

$$U_6 = \{1, 5, 5^2, 5^3, 5^4, 5^5\}$$
 where  $S = e^{6i}$   
has order 6.  
and  
 $U_4 = \{1, 7, 7^2, 7^3\}$  where  $T = e^{\frac{2\pi}{4}i}$   
has order 4.

To construct q: UG -> Uy first we pick a generator for UG. We have



case 1: Pick I from Uy. Define  $\varphi: U_6 \rightarrow U_9$  where  $\varphi(g^k) = [k$ Thus,  $\varphi(g^k) = [for all k.$ 



Here 
$$\ker(\varphi_{1}) = \bigcup_{G}$$
 and  $\operatorname{im}(\varphi_{1}) = \xi_{1}\xi_{1}$ .  
Case 2: Pick  $\chi^{2}$  from  $\bigcup_{G}$ .  
Define  $\varphi_{2} : \bigcup_{G} \to \bigcup_{\Psi}$  where  $\varphi_{2}(g^{k}) = (\chi^{2})^{k}$   
So,  
 $\varphi_{2}(1) = \varphi_{2}(g^{o}) = (\chi^{2})^{o} = 1$   
 $\varphi_{2}(g^{2}) = (\chi^{2})^{2} = \chi^{2}$   
 $\varphi_{2}(g^{2}) = (\chi^{2})^{2} = \chi^{4} = 1$   
 $\varphi_{2}(g^{3}) = (\chi^{2})^{3} = \chi^{6} = \chi^{4}\chi^{2} = \chi^{2}$   
 $\varphi_{2}(g^{3}) = (\chi^{2})^{4} = \chi^{8} = \chi^{4}\chi^{4} = 1$   
 $\varphi_{2}(g^{5}) = (\chi^{2})^{5} = \chi^{10} = \chi^{4}\chi^{4}\chi^{2} = \chi^{2}$ 

Here is the picture



So, there are two homomorphisms From V6 to V4.

Let me discuss why the above  
is constructed this way.  
Let's say we wanted  

$$\varphi(g) = \chi^2$$
  
Then for  $\varphi$  to be a homomorphism  
we need  
 $\varphi(g^2) = \varphi(g)\varphi(g) = \chi^2\chi^2 = (\chi^2)^2$   
 $\varphi(g^2) = \varphi(g)\varphi(g)\varphi(g) = \chi^2\chi^2 = (\chi^2)^2$   
and  
 $\varphi(g^3) = \varphi(g)\varphi(g)\varphi(g) = \chi^2\chi^2 = (\chi^2)^2$   
and  
 $\varphi(g^3) = \varphi(g)\varphi(g)\varphi(g) = \chi^2\chi^2 = (\chi^2)^2$   
and  
 $\varphi(g^3) = \varphi(g)\varphi(g)\varphi(g) = \chi^2\chi^2 = (\chi^2)^2$ 

This is why one This is why one This is why one This is why one This is  $\varphi(g^k)$  goes. If forces where  $\varphi(g^k)$  goes.

Ex: Let's construct a homomorphism  

$$\varphi: \mathbb{Z} \to \mathbb{R}$$
.  
We know  $\mathbb{Z}$  is cyclic with  $\mathbb{Z} = \langle 1 \rangle$ .  
Since I has infinite order we can  
pick any element of  $\mathbb{R}$  to make  $\varphi$ .  
Let's pick  $\mathbb{T}$ .  
Then, by the theorem we define  
 $p(n) = n\mathbb{T}$   $\mathbb{Z}$  and  
 $\mathbb{R}$  are  
 $givps$   
 $under
 $q(n) = n\mathbb{T}$   $\mathbb{Z}$  and  
 $\mathbb{R}$  are  
 $givps$   
 $under
 $det'i$  explain where  
 $this$  comes from.  
Let's say we want  $\varphi(i) = \mathbb{T}$ .  
Then for  $\varphi$  to be a homomorphism  
we need  
 $\varphi(2) = \varphi(1+1) = \varphi(1) + \varphi(1) = \mathbb{T} + \mathbb{T} = 2\mathbb{T}$$$ 

and  

$$\varphi(3) = \varphi(1+1+1) = \varphi(1) + \varphi(1) + \varphi(1)$$

$$= \pi + \pi + \pi$$

$$= 3\pi$$
inverse here  
is under  

$$\varphi(-1) = [\varphi(1)]^{-1} = [\pi]^{-1} k$$

$$= -\pi$$

$$\varphi(-2) = \varphi(-1-1) = \varphi(-1) + \varphi(-1)$$

$$= -\pi - \pi$$

$$= -2\pi$$

and so on. This is why unce you pick  $\varphi(1) = \Pi$ you must then have  $\varphi(n) = n\Pi$ .

So we get this picture:



Here  $ker(\varphi) = \{o\}$  so  $\varphi$  is 1-1, im $(\varphi) = \{k\pi \mid k \in \mathbb{Z}\}$ 

Theorem: (Classification of cyclic groups)  
Let G be a cyclic group.  
• If 
$$|G| = N$$
, then  $G \cong \mathbb{Z}_n$   
• If  $|G| = \infty$ , then  $G \cong \mathbb{Z}$ .

Casel: Let G=<x> where x has Order n. Then,  $G = \{1, x, x\}, \dots, x^{n-1}\}$ . Define  $\varphi: G \to \mathbb{Z}_n$  by  $\varphi(X^k) = k$ We picked T in Zn of order n and k is the "k-th power" of i By the previous theosem, P is a homomorphism.



We see that  $\varphi$  is I-1 and onto so  $\varphi$ is an isomorphism. Thus,  $G \cong \mathbb{Z}n$ .

G= <x> where x Cuse 2: Let has infinite order. Define  $\varphi: G \to \mathbb{Z}$  where  $\varphi(\chi^k) =$ R. [We picked I in Z and k] is the "k-th power" of I] By the previous theorem, q is a honomorphism.

Z  $\left( -\right)$ P x-3 -3 -7 X 2 × Х 2 X2 3 1 χ<sup>3</sup>.

We see that 9 īs [-] and onto. Thus, 9 is an isomurphism bnA  $G \cong Z/$ 



Below is the proof of the theorem about honomorphisms from the notes

## First a lemma.

Lemma: Let G be a group.  
Let 
$$x \in G$$
 where x has  
order n. If  $x^{k} = e$  for  
some integer k, then n divides k.  
Proof: By the division algorithm  
 $k = q n + r$   
where  $0 \le r < n$ .  
Then  
 $e = x^{k} = x^{qn+r} = (x^{n})^{q} x^{r} = e^{q} x^{r} = x^{r}$   
Since n is the order of x and  
 $0 \le r < n$  we must have  $r = 0$ .  
Thus,  $k = qn$ .  
So, n divides k.

Theorem: (Homomorphisms out of cyclic  
groups) Let 
$$G_1 = \langle x \rangle$$
 be a  
cyclic group. Let  $G_2$  be a group.  
case 1: Suppose x has finite order n  
lick  $y \in G_2$  with order m dividing n.  
Then,  $\varphi: G_1 \rightarrow G_2$  given by  $\varphi(x^k) = y^k$   
is a homomorphism. Furthermore,  
every homomorphism from  $G_1$  to  $G_2$   
is of the above form.  
 $G_1$   
 $x$   
 $y$   
 $x$   $y$   
 $y$   
 $y$   
 $y$  has order  
m dividing n

case 2: Suppose x has infinite order Pick any ye G2. Then q: G, >Gz given by q(xk)=yk is a homomorphism. Furthermore, every homomorphism from G, to G2 is of the above form. Gz  $(\mathcal{F})$ Pick any infinite order) (Xhas proof: Let G= LX> where XEG. Casel: Suppose & has order A.

Let 
$$y \in G_2$$
 have order  $m$ .  
Suppose  $m$  divides  $n$ .  
Then  $n=ml$  where  $l \in \mathbb{Z}_{-}$ .  
Let  $\varphi: G_1 \rightarrow G_2$  be defined as  $\varphi(x) = y^k$   
Let  $\varphi: G_1 \rightarrow G_2$  be defined as  $\varphi(x) = y^k$ .  
First we show that  $\varphi$  is well-defined.  
Suppose  $x^n = x^b$  where  $a \ge b$ .  
Suppose  $x^{n-b} = e_1$  where  $e_1$  is the identity  
Then  $x^{n-b} = e_1$  where  $e_1$  is the identity  
 $p_1 = p(x^{n-b}) = \varphi(x^{n+1}) = \varphi(x^{n+1}) = \varphi(x^{n+1})$   
 $g^{n-b} = \varphi(x^{n-b}) = \varphi(x^{n+1}) = \varphi(x^{n+1}) = \varphi(x^{n+1})$   
 $= y^{n+1} = (y^n)^{l_q} = e_2^{l_q} = e_2$   
So,  $y^{n-b} = e_2$  where  $e_2$  is the identity  
 $f_1 = y^{n-b} = e_2$  where  $e_2$  is the identity  
 $y^{n-b} = \varphi(x^{n-b}) = \varphi(x^{n+1}) = \varphi(x^{n+1}) = \varphi(x^{n+1})$   
By the lemma  $a-b=mj$  where  $j \in \mathbb{Z}$ .  
By the lemma  $a-b=mj$  where  $j \in \mathbb{Z}$ .  
So,  $\varphi(x^n) = y^n = y^{b+mj} = y^b y^m = y^b = \varphi(x^{n+1})$   
Thus if  $x^n = x^b$  then  $\varphi(x^n) = \varphi(x^n)$ 

and 
$$\varphi$$
 is well-defined.  
Now we show that  $\varphi$  is a homomorphism  
Let  $W, Z \in G_1$   
Then  $W = X^c$  and  $Z = X^d$  where  $c, d \in \mathbb{Z}$ .  
So,  
 $\varphi(WZ) = \varphi(X^c X^d) = \varphi(X^{ctd}) = y^{ctd}$   
 $= y^c y^d = \varphi(X^{ctd}) = \varphi(W)\varphi(Z)$   
Thus  $\varphi$  is a homomorphism.  
Now we show the furthermore part  
of the theorem.  
Suppose that  $\psi: G_1 \rightarrow G_2$  is a  
homomorphism.  
Let  $y = \Psi(X)$ .  
By induction and the fact that  $\psi$   
is a homomorphism we get  
is a homomorphism we get  
that  $\Psi(X^k) = y^k$ .  
Let  $y$  have order  $M_1$ .

Then,  

$$e_{z} = \varphi(e_{i}) = \varphi(x^{n}) = \varphi(x^{mq+r})$$

$$= y^{mq+r} = (y^{m})^{q} y^{r} = e_{z}^{q} y^{r}$$

$$= y^{r}$$